

 Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA)

 3.5.1

 Info for Reviewers

	Introduction for Reviewers
	Purpose
	Documentation	Software Documentation
	Review Wikis
	Papers
	Source Code

	Testing on Review Server	Fake cases
	Running Fake Cases

	Contents of the Output Folder	Inputs
	Main Outputs
	Auxilliary Outputs
	Real cases

Quick Start Guide

	Using the Docker Images	Installing Docker
	Docker Cloud
	Getting LLAMA Images	Choosing the Image
	Getting/Updating the Image
	Removing Images

	Running a LLAMA Container
	Mounting Directories	Mounting in MacOS/Linux
	Mounting in Windows

	Out of Memory/Disk

	Running on Habanero	Interactive Habanero Jobs
	Docker Hub Authentication with Singularity
	Fixing Singularity Cache on Habanero
	Load Singularity Module
	Pull LLAMA Image

	Local Installation	System Requirements
	Installing Conda

	Setting Up a Production Server	Install Docker
	Install Docker Compose
	Log in to Docker Cloud
	Get docker-compose.yml
	Starting LLAMA Production App

Operators' Guide

	Introduction
	How Data is Organized	Event Directories
	GCN Notice Archive
	Log Files

	Running the Pipeline Automatically
	Running the Pipeline Manually	Using Defaults with skymap_info

	Sensitivity and Background Studies (O3B)
	Sensitivity and Background Studies (pre-O3B)	Editing your .bashrc	Using the DigitalOcean API

	LLAMA Scripts
	Adding Your SSH Keys to the Droplets
	Installing Requirements
	DigitalOcean Administration Examples	Preparing a Server

	Server Preparation Overview
	Moving Data into Place	Running the Analysis in Parallel

	Starting the Servers
	Running the Analysis
	Collecting Results

Developer's Guide

	Developer Installation	Obtaining the LLAMA Source Code
	Using the Docker Dev Image	List bin/docker Commands
	Getting the Latest Development Image
	Starting a Dev Container
	Sketch of a Bug Fix
	Destroying your Dev Container

	Previous LLAMA Versions	Developer Installation (Pre-O3)	System Requirements
	Introduction
	Installing LLAMA Dependencies
	Obtaining the LLAMA Software (pre-O3)
	Setting up Configuration Files
	Install git Hooks
	Install LLAMA dependencies
	Install LIGO Software
	Install IceCube Offline Software	Installing IceCube Dependencies
	Entering IceCube Credentials

	Install MATLAB

	Configuration and Authentication	Generate SSH Keys
	GMail Authentication
	LIGO Authentication
	Setting Up SSL Certificates
	Setting Up Passwords for Run Summary Pages

	External Authentication	Bitbucket Authentication
	git.ligo.org Authentication
	Twilio Authentication
	GW Astronomy Authentication
	GCN Authentication

	Turning on the Pipeline	Subscribing to LVAlert Nodes
	Starting Pipeline Daemons	Testing LVAlert

	Viewing Active Processes
	Checking Pipeline Logs
	Killing Pipeline Daemons
	Deprecated: MATLAB Logs

	Developing for LLAMA	Introduction to Development	Structure of the Pipeline
	Adding Functionality

	Developer Conventions and Best Practices	Data Format Conventions
	Coding Best Practices

	Testing

	Appendix	Migrating to Conda	LIGO Wiki Documentation
	Installing LIGO Software via Conda

	Troubleshooting Installation	Creating a new user
	Out of Memory
	MATLAB Installation Troubleshooting

	Install IceCube Offline Software with Root
	Installing Ubuntu for Windows
	Logging in to a Remote Server Using SSH
	Getting LLAMA Software onto a Remote Server
	SSH with X11 Forwarding
	Using LLAMA
	Documenting LLAMA	Overview
	Publishing to gwhen.com Website
	Publishing Readme to Git Host
	Publishing PDFs
	Publishing HTML Web Pages

	Troubleshooting LLAMA
	Setting Up the Review Server	Provisioning the review server
	Running the Review

	Ideas for the Future
	CVMFS	Advantages
	Disadvantages

Bibliography

	Academic Papers	Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA) with Gravitational-Wave and High-Energy Neutrino Candidates
	Bayesian Multi-Messenger Search Method for Common Sources of Gravitational Waves and High-Energy Neutrinos

API Documentation

	llama package

	llama.batch package
	llama.classes module
	llama.cli module
	llama.com package	llama.com.dl package
	llama.com.do package
	llama.com.email package
	llama.com.gracedb package
	llama.com.s3 package
	llama.com.slack package
	llama.com.utils module

	llama.detectors module	Available Detectors

	llama.dev package	llama.dev.background package	llama.dev.background.pvalue package
	llama.dev.background.table package
	llama.dev.background.table_singles package

	llama.dev.clean package
	llama.dev.data package	llama.dev.data.i3 package

	llama.dev.docs package	llama.dev.docs.cli package

	llama.dev.dv package
	llama.dev.log package	llama.dev.log.lvalert package

	llama.dev.upload package

	llama.event package
	llama.filehandler package	llama.filehandler.classes module
	llama.filehandler.mixins module

	llama.files package	llama.files.coinc_significance package	llama.files.coinc_significance.opa module
	llama.files.coinc_significance.subthreshold module
	llama.files.coinc_significance.utils module

	llama.files.healpix package	llama.files.healpix.plotters module
	llama.files.healpix.psf module
	llama.files.healpix.skymap module
	llama.files.healpix.utils module

	llama.files.i3 package	llama.files.i3.json module
	llama.files.i3.realtime_tools_stubs module
	llama.files.i3.tex module
	llama.files.i3.txt module
	llama.files.i3.utils module

	llama.files.lvc_skymap package	llama.files.lvc_skymap.utils module

	llama.files.skymap_info package	llama.files.skymap_info.cli module
	llama.files.skymap_info.utils module

	llama.files.slack package
	llama.files.advok module
	llama.files.coinc_analyses module
	llama.files.coinc_o2 module
	llama.files.coinc_plots module
	llama.files.fermi_grb module
	llama.files.gcn_draft_o2 module
	llama.files.gracedb module
	llama.files.gwastro module
	llama.files.lvalert_advok module
	llama.files.lvalert_json module
	llama.files.lvc_gcn_xml module
	llama.files.lvc_skymap_mat module
	llama.files.lvc_skymap_txt module
	llama.files.matlab module
	llama.files.sms_receipts module
	llama.files.team_receipts module
	llama.files.timing_checks module
	llama.files.uw_summary module
	llama.files.ztf_trigger_list module

	llama.flags package	llama.flags.cli module

	llama.install package	llama.install.manifest module

	llama.intent module
	llama.io package	llama.io.default package	llama.io.default.generate module

	llama.io.classes module
	llama.io.registry module

	llama.listen package	llama.listen.gcn package
	llama.listen.lvalert package

	llama.lock module
	llama.meta module
	llama.pipeline module	Pipelines

	llama.poll package	llama.poll.gracedb package

	llama.run package
	llama.serve package	llama.serve.gui package	llama.serve.gui.wsgi package
	llama.serve.gui.domain module

	llama.serve.jupyter package	llama.serve.jupyter.logs module
	llama.serve.jupyter.utils module

	llama.test package	llama.test.test_files package
	llama.test.test_listeners package	llama.test.test_listeners.test_gcn module

	llama.test.classes module
	llama.test.test_bin module
	llama.test.test_filehandler module
	llama.test.test_pipeline module
	llama.test.test_utils module

	llama.utils module
	llama.version module
	llama.versioning module
	llama.vetoes module

Code Reports

	Unit Tests
	Code Coverage
	Performance Profiling	Combined Results	combined

	Unit Tests	test
	test_default_pipeline_consistency
	test_filehandler_definition_consistency
	test_get_grid_make_grid
	test_get_grid_north_pole
	test_llama_pipeline_parser
	test_llama_run_parser
	test_memoize
	test_memoize_class
	test_memoize_helper
	test_mjd_interval
	test_rotate_angs2vec
	test_write_gzip

	Doctests	llama.com	llama.com.gracedb	llama.com.gracedb.GraceDb

	llama.dev	llama.dev.data	llama.dev.data.i3

	llama.dev.upload	llama.dev.upload.upload_and_get_manifest

	llama.filehandler	llama.filehandler.JSONFile	llama.filehandler.JSONFile.checksum

	llama.files	llama.files.fermi_grb	llama.files.fermi_grb.get_grbs_from_csv

	llama.files.healpix	llama.files.healpix.HEALPixSkyMapFileHandler
	llama.files.healpix.LvcHEALPixSkyMapFileHandler
	llama.files.healpix.psf
	llama.files.healpix.skymap
	llama.files.healpix.utils

	llama.files.i3	llama.files.i3.json
	llama.files.i3.utils

	llama.files.lvc_gcn_xml	llama.files.lvc_gcn_xml.parse_ivorn

	llama.files.lvc_skymap	llama.files.lvc_skymap.utils

	llama.files.matlab	llama.files.matlab.matlab_eval

	llama.utils	llama.utils.get_voevent_param
	llama.utils.get_voevent_time
	llama.utils.parameter_factory
	llama.utils.rotate_angs2angs
	llama.utils.rotate_angs2vec
	llama.utils.write_gzip
	llama.utils.write_to_zip

	Source Code Plots

Command Line Interface

	llama Command Line Interface	Named Arguments
	subcommands (call one with ``–help`` for details on each)

	llama batch	Named Arguments
	choose pipeline (see ``llama.pipeline``)
	logging settings
	simulation configuration

	llama com	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama com do	Named Arguments

	llama com gracedb	Positional Arguments
	logging settings

	llama com slack	Positional Arguments
	Named Arguments
	logging settings

	llama dev	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama dev background	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama dev background pvalue	Named Arguments

	llama dev background table	Positional Arguments
	Named Arguments

	llama dev clean	Named Arguments
	filter runs and events (see: ``llama.run``)
	logging settings

	llama dev data	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama dev data i3	Named Arguments
	logging settings

	llama dev docs	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama dev docs cli	Positional Arguments

	llama dev dv	Positional Arguments
	Named Arguments

	llama dev log	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama dev log lvalert	Named Arguments

	llama dev upload	Named Arguments
	logging settings

	llama event	Named Arguments
	choose pipeline (see ``llama.pipeline``)
	filter runs and events (see: ``llama.run``)

	llama files	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama files i3	Named Arguments
	output formats (specify at least 1)

	llama flags	Named Arguments
	filter runs and events (see: ``llama.run``)

	llama install	Named Arguments
	logging settings

	llama listen	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama listen gcn	Named Arguments
	logging settings

	llama listen lvalert	Named Arguments
	logging settings

	llama poll	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama poll gracedb

	llama run	Named Arguments
	choose pipeline (see ``llama.pipeline``)
	filter runs and events (see: ``llama.run``)
	logging settings

	llama serve	Named Arguments
	subcommands (call one with ``–help`` for details on each)
	llama serve gui	Named Arguments
	logging settings

	llama serve jupyter	Named Arguments
	logging settings

 Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA)

 	Docs »
	Developer Installation »
	Developer Installation (Pre-O3)
	

 View page source

Developer Installation (Pre-O3)¶

NOTE: Theses instructions are for older versions of the pipeline (pre-O3).
They are kept in place in case you need to work with those versions, or in case
you need a starting point for e.g. a full IceCube stack installation. If you
are working with the latest versions of the code, please read previous sections
of the developer guide.

System Requirements¶

Make sure you have at least 4GB of memory (physical or virtual;
`swap space`_ is fine) and 15GB of free space on your file
system.

Introduction¶

To get up and running, start up a bash session and run each of the
commands below. You should log in as a user other than root (more precisely,
you should log in as the user who will run the LLAMA software in production;
on a new install, you might need to create a new user).
If you are installing LLAMA on a remote server (i.e.
a computer besides the one that you are currently sitting in front of), you
can read the SSH with X11 Forwarding section for instructions on how to
connect to a remote server via SSH.

The below instructions will only work on Debian 8 (Jessie).
You can adapt them to other platforms if you know what you are doing,
but Debian 8 is the only supported platform.
It should be possible to finish installation by blindly running
commands, but even so, make sure to copy and paste each line one-at-a-time
to make sure they are entered properly. Don’t worry about the explanatory bits
if you are not interested, but make sure to read parts that are in bold. You
don’t have to click any of the hyperlinks in this guide; they are for reference
purposes only. If you encounter trouble, look in the Appendix.

Installing LLAMA Dependencies¶

There are a few dependencies you will need for LLAMA installation and
development. Install these now:

sudo apt-get -y update
sudo apt-get -y install python-sphinx rsync curl wget unzip git dtrx \
 msmtp-mta heirloom-mailx xpdf debconf-utils make \
 apache2 apache2-doc apache2-utils ncdu ack-grep silversearcher-ag \
 python3-six python3-pytest \
 python3-pytest-cov ipython3 pandoc libapache2-mod-python \
 latexmk python-profiler python-wxgtk3.0 python-setuptools runsnakerun \
 htop texlive-publishers

You will also want to install git-lfs, an extension to git used for large
file storage (git-lfs install instructions taken from here), which LLAMA
uses to store large data files:

curl -s \
 https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh \
 | sudo bash
sudo apt-get -y install git-lfs

You must activate git-lfs on a per-user basis. Make sure to run the following
command as the user who will run the LLAMA server:

cd ~
git lfs install

Obtaining the LLAMA Software (pre-O3)¶

LLAMA software is stored in a git repository with git-lfs used for
large data file storage. You can obtain the entire LLAMA software repository
with a quick git clone followed by a somewhat slower fetching of the large
data files. First, though, you will want to Generate SSH Keys so that you
don’t need to enter your password over and over (SSH keys are actually required
on git.ligo.org and, at time of writing, on the Bitbucket multimessenger
pipeline repository). See the Bitbucket Authentication and git.ligo.org
Authentication sections for instructions on adding your SSH keys to those
sites.

Once you’ve set up SSH keys, it’s time to actually clone the LLAMA
repository:

cd ~
git clone git@bitbucket.org:stefancountryman/multimessenger-pipeline.git

You might be prompted to confirm that you want to connec to Bitbucket; if you
see something like the following, just type yes and hit enter:

The authenticity of host ‘bitbucket.org (18.205.93.0)’ can’t be established.

RSA key fingerprint is 97:8c:1b:f2:6f:14:6b:5c:3b:ec:aa:46:46:74:7c:40.

Are you sure you want to continue connecting (yes/no)?

You can (pretty much) confirm that the LLAMA software folder was created by
running:

cd multimessenger-pipeline && git status; cd ~

If you see the following response:

On branch master

Your branch is up-to-date with ‘origin/master’.

nothing to commit, working directory clean

then you have (most likely) succeeded in obtaining the LLAMA codebase.

Setting up Configuration Files¶

You must now move the default configuration files into place (this affects
things like gw-astronomy.org access and email
sending):

ipython profile create
ln -s \
 ~/multimessenger-pipeline/static/llama-ipython-startup.py \
 ~/.ipython/profile_default/startup/llama-ipython-startup.py
ln -s multimessenger-pipeline/static/.gitattributes ~
ln -s multimessenger-pipeline/static/.inputrc ~
ln -s multimessenger-pipeline/static/.mailrc ~
cp multimessenger-pipeline/static/.msmtprc ~
cp multimessenger-pipeline/static/.netrc ~
cp multimessenger-pipeline/static/.twilio-credentials ~
ln -s multimessenger-pipeline/static/.vimrc ~
mkdir -p ~/.ssh
ln -s multimessenger-pipeline/static/.ssh/config ~/.ssh
chmod 0600 ~/.msmtprc
touch ~/.bashrc
[-e ~/.bashrc.orig] || cp ~/.bashrc ~/.bashrc.orig
cat \
 ~/.bashrc.orig \
 ~/multimessenger-pipeline/static/.bashrc-llama-addendum \
 >~/.bashrc
. ~/.bashrc

You should see “LLAMA” appear in big letters accross your terminal. You should
also now be able to access the main LLAMA executable, llama, which contains
all user features as subcommands, as well as developer scripts, since they
should all now be part of your shell’s ${PATH} variable.

Now, you will want to preseed your Kerberos and HTCondor preferences to avoid
being bugged later by debconf during your eventual Kerberos installation:

sudo debconf-set-selections ~/multimessenger-pipeline/static/preseed.cfg

Install git Hooks¶

You can have the server automatically regenerate documentation and home page
when they are modified by installing the included git hooks. From the
repository directory, run:

for h in git-hooks/*; do ln -fs ../../$h .git/hooks; done

Install LLAMA dependencies¶

You can install (mostly non-LIGO) LLAMA dependencies from the
requirements.txt file:

curl -O https://raw.githubusercontent.com/stefco/llama-env/master/requirements.txt
pip install -r requirements.txt
rm requirements.txt

Install LIGO Software¶

LIGO supports Scientific Linux, Debian, and (on a best-effort basis) OS
X. The below instructions are for Debian 8 (Jessie).

First, we will need to install LIGO dependencies. The first step is
adding LIGO’s package repositories to Debian’s list of sources so that
Debian’s package manager knows where to find the LIGO software packages
we are about to install. This simply requires copying the source list into
Debian’s source list directory. Further documentation available on LIGO’s
Software Downloads
page.

sudo cp ~/multimessenger-pipeline/static/lscsoft.list \
 /etc/apt/sources.list.d/lscsoft.list

The following line should prevent the installation process from asking
for user feedback. This is useful if you want to run installation in the
background.

export DEBIAN_FRONTEND=noninteractive

You should always update your package manager’s list of repositories
before trying to install something new:

sudo apt-get -y -qq update

You will need to tell the package manager to trust LIGO software. You
might still get warnings about untrusted software packages; this is
fine.

sudo apt-get install -y -qq --force-yes lscsoft-archive-keyring

Update again.

sudo apt-get -y -qq update

Finally, install lscsoft-all, the comprehensive LIGO software
package.

sudo apt-get install -y -qq --force-yes \
 -o Dpkg::Options::="--force-confdef" \
 -o Dpkg::Options::="--force-confold" \
 lscsoft-all lalinference

Next, install ligo datagrid; this usually fails the first time and works the
second time for some reason. If it fails, the below command will keep retrying
until it succeeds, which generally seems to work.

retval=1
until [$retval -eq 0]; do
 echo 'ATTEMPTING TO INSTALL DATAGRID'
 curl https://www.lsc-group.phys.uwm.edu/lscdatagrid/doc/ldg-client.sh \
 >/tmp/ldg-client.sh \
 && sudo bash /tmp/ldg-client.sh
 retval=$?
done

Once the script is finished executing, you can confirm that installation
was successful by running:

type ligo-proxy-init >/dev/null 2>&1 \
 && { echo "LIGO Data Grid Installation succeeded."; } \
 || { echo "LIGO Data Grid Installation failed! Try again."; }

to check for one of the installed executables. This command will tell
you whether installation was successful (again, if installation failed,
just try repeating the previous step).

Finally, install miscellaneous python dependencies using pip.
One of these dependencies, gwpy, is in active development and can
be a bit finicky. The below instructions should “just work”, but if not,
further documentation is available on GWPy’s install instructions
page.

Tell Debian to use the default locale (otherwise errors come up in the
scipy update):

export LC_ALL=C

Update the python package installer pip:

sudo pip install --upgrade pip

Update scipy to a version recent enough for GWpy to work (the next
line might take a while to finish and might produce a lot of ugly
output depending on your precise version of Debian Jessie; don’t be alarmed
if this is the case.):

sudo pip install 'scipy>=0.16'

Install GWpy:

sudo pip install gwpy

Install IceCube Offline Software¶

These packages are used for retrieving neutrino data from IceCube.

Installing IceCube Dependencies¶

First you’ll need to make sure you’re using a newer version of cmake than
is available on Debian Jessie; do this by adding more recent backports to the
apt sources list:

sudo cp ~/multimessenger-pipeline/static/backports.list \
 /etc/apt/sources.list.d/backports.list

Now you can install the latest cmake version by forcing apt-get to use the
jessie-backports repository:

sudo apt-get -t jessie-backports install cmake

Now, install dependencies
for the IceCube offline software (with all of the recommended extras):

apt-get install build-essential cmake libbz2-dev libgl1-mesa-dev \
 freeglut3-dev libxml2-dev subversion libboost-python-dev \
 libboost-system-dev libboost-signals-dev libboost-thread-dev \
 libboost-date-time-dev libboost-serialization-dev \
 libboost-filesystem-dev libboost-program-options-dev \
 libboost-regex-dev libboost-iostreams-dev libgsl0-dev libcdk5-dev \
 libarchive-dev python-scipy ipython-qtconsole libqt4-dev python-urwid \
 libz-dev libqt5opengl5-dev libstarlink-pal-dev python-sphinx \
 libopenblas-dev libcfitsio3-dev libsprng2-dev libmysqlclient-dev \
 libsuitesparse-dev libcfitsio3-dev libmysqlclient-dev \
 libhdf5-serial-dev root-system

Entering IceCube Credentials¶

Next, store your IceCube username and password in the uname and pword
variables; we will use this to check out the IceCube repository. You should
have received IceCube login credentials as part of the installation procedure.
The next two lines of commands will read your IceCube username and password
in and store them as variables. If you make a mistake entering your password,
or if something goes wrong while installing IceCube software, you should run
these lines again just to make sure that your credentials are being passed
to SVN in the next step.

read -p 'Enter your IceCube username: ' uname && \
read -sp 'Enter your IceCube password: ' pword && echo

Next, check out
IceCube offline software. These instructions are adapted from the original
IceCube offline software installation instructions;
you can find all offline software releases here.
A full overview of IceCube software is available here.
Make sure to check out the latest version (if it is not the same as the one
listed in the following code block).
The while loop is included to catch and handle segmentation faults during
checkout; these are, unfortunately, a known
bug in Debian
Jesse’s SVN version.

sudo mkdir -p /usr/local/icecube/offline
cd /usr/local/icecube/offline
export IceCube_SVN=http://code.icecube.wisc.edu/svn
sudo svn --username "$uname" --password "$pword" co \
 "$IceCube_SVN"/meta-projects/offline-software/releases/V18-06-00 src

You should run the next code block to make sure that the SVN checkout
succeeded in full.

retval=$?
while ! [$retval -eq 0]; do
 echo 'QUIT EARLY DUE TO SEGFAULT IN SVN, RESTARTING CHECKOUT'
 sudo svn cleanup src
 sudo svn update src
 retval=$?
done

Now it is time to build the IceTray software. This next step is very slow; let
this run for a couple of hours while you go do something else. Fortunately,
this step can be resumed at the make command in the event of failure.

sudo mkdir -p /usr/local/icecube/offline/build
cd /usr/local/icecube/offline/build
sudo cmake -DSYSTEM_PACKAGES=True ../src
sudo make

If you get an error while running cmake or make, there was
probably an error that prevented you from fetching the entire software
repository from SVN. You should go back a few steps and start over from when
you entered your IceCube credentials a few
steps ago. Finally, download some data used by IceCube test and example
scripts.

sudo make rsync

The .bashrc modification you made
at the beginning of this whole procedure
has already put the necessary modifications to your environmental variables in
place (e.g. your PYTHONPATH variable has been updated to
include the location of the new IceCube python libraries, so that you can
import them next time you run python). You can therefore test whether the
IceCube python software was installed successfully:

python -c 'from icecube import dataclasses; print("Success!")'

You should see Success! printed on your console. If so,
congratulations! You have successfully installed the IceCube offline software.
Now, you will have to check out a set of neutrino querying python tools used
by LLAMA. Change to the LLAMA software directory and check out the live
software. Again, store your IceCube username and password in variables (you can
skip this step if those variables are still initialized from before):

read -p 'Enter your IceCube username: ' uname && \
read -sp 'Enter your IceCube password: ' pword && echo

Now, check out the live querying software:

cd ~/multimessenger-pipeline/icecube
export IceCube_SVN=http://code.icecube.wisc.edu/svn
svn --username "$uname" --password "$pword" co \
 "$IceCube_SVN"/projects/realtime_tools/releases/V19-02-00/python \
 realtime_tools
svn --username "$uname" --password "$pword" co \
 "$IceCube_SVN"/projects/realtime_gfu/releases/V19-02-00/python \
 realtime_gfu
pushd realtime_gfu
svn --username "$uname" --password "$pword" co \
 "$IceCube_SVN"/projects/realtime_gfu/releases/V19-02-00/resources \
 resources
popd
this is a kludge to get the realtime_gfu resources in place
sudo cp -R \
 ~/multimessenger-pipeline/icecube/realtime_gfu \
 /usr/local/icecube/offline/build/

Install MATLAB¶

You will need to download the MATLAB
Installer
as well as the JSONLab
toolbox.
You must install the following three MATLAB Toolboxes at the same time
that you install MATLAB, and you must make sure to also install MATLAB itself.
Do so by selecting the following four items in the install dialog (note that
the MATLAB version might change from 9.1, but it should be at the top of the
list):

	MATLAB 9.1

	Image Processing Toolbox

	Mapping Toolbox

	Statistics and Machine Learning Toolbox

Also make sure to check the box in the install dialogue asking if you would
like to make symlinks to MATLAB. This is necessary in order for command line
calls to matlab to work (which is necessary for our scripts to run in the
current iteration of the pipeline). If you forget to do this, you can
manually add the symlink in with:

sudo ln -s /usr/local/MATLAB/*/bin/matlab /usr/local/bin/matlab

You can confirm that the symlink was made by running:

type matlab 2>/dev/null 1>&2 && echo 'success!' || echo 'symlink not found!'

You can install the JSONLab toolbox from within the MATLAB interface
after it has been successfully installed. See the appendix for some
MATLAB installation details.
You will usually have to install JSONLab twice before it remains
permanently installed. It is not clear why this is, but it works after
the second installation. You can confirm that JSONLab is installed by
opening a MATLAB session and seeing if loadjson is a valid command;
if it is, then JSONLab has been successfully installed. You can also
simply run this command to see if JSONLab installed successfully:

matcmd=""
matcmd+="if exist('loadjson')"
matcmd+=" disp('JSONLab installed successfully.');"
matcmd+="else"
matcmd+=" disp('JSONLab failed to install.');"
matcmd+="end;"
matcmd+="exit"
matlab -nodesktop -nosplash -noFigureWindows -r "${matcmd}"

If JSONLab failed to install, just open up MATLAB and reinstall it. This
is sometimes necessary for some reason.

Now, install the matlab python module, which will allow python code to call
MATLAB scripts via the MATLAB Engine API:

cd $(sudo find / -path '*/extern/engines/python')
sudo python setup.py install

Confirm that installation of the Python MATLAB Engine API succeeded:

python -c 'import matlab; print("success!")'

Configuration and Authentication¶

These steps involve entering your credentials for the services used by
LLAMA, as well as some basic configuration. These instructions assume
that you have LIGO login credentials. Some of the steps require you to
contact one of our partners (e.g. GCN or gw-astronomy.org) to configure
authentication. These appear after this section in the external
authentication section.

Generate SSH Keys¶

SSH keys are used to securely log in to other computers without a
password. LLAMA uses them to upload data to
gw-astronomy.org. A great and
user-friendly guide to setting up SSH keys is available on Digital
Ocean’s
blog.
These instructions are pulled from that article.

First, check whether you have an SSH key already created. The following command
will print “no SSH key found” if it doesn’t find an existing key:

[-e ~/.ssh/id_rsa.pub] || echo "no SSH key found."

If you don’t already have an SSH key, create a new one by running the following
command and hitting enter repeatedly until it finishes (WARNING: this will
overwrite your existing SSH key if you do in fact have one already, possibly
costing you access to servers you are currently able to SSH into.):

ssh-keygen

You should see some funny ASCII art print out once it’s finished. You can now
print your SSH key with:

cat ~/.ssh/id_rsa.pub

You will eventually have to make sure that the public key is on
gw-astronomy.org’s list of authorized
keys; this step is discussed below in the external
authentication section.

GMail Authentication¶

	Create a device (or “app”, as Google calls it) password for
gw.hen.analysis@gmail.com (or your personal gmail, if you are just
trying to run some tests). This password is different from your login
password and is only to be used by a single device. You can generate
a device password
here.

	Use your favorite text editor to open ~/.msmtprc and replace
<WRITE-PASSWORD-HERE> with your newly-created device password.
If you are using a personal gmail account (rather than
gw.hen.analysis@gmail.com), you will want to find each occurence of
gw.hen.analysis@gmail.com in this file and replace it with your
personal gmail address.

LIGO Authentication¶

	Run ligo-proxy-init your.username and enter your LIGO password.
This will allow you to download GW event data from GraceDB. You will
need to do this every few days.

LV_Alert Authentication

	Make sure you have an LVAlert username and password set up. You can do this
here. You
can learn more about LVAlert on the
official documentation pages
and from the GraceDB
LVAlert guide.

	Use your favorite text editor to open ~/.netrc and replace
<WRITE-USERNAME-HERE> with the LVAlert username you created in step 1
and <WRITE-PASSWORD-HERE> with the password for that LVAlert username.
If you already have a password but forgot it, you can easily reset it at
the link provided in step 1.

	(Optional) You can make sure that your credentials work by running

 lvalert_admin --username albert.einstein --subscriptions

where, of course, ``albert.einstein`` is replaced with the LVAlert username
you made in step 1.

Setting Up SSL Certificates¶

In order to access the server using the HTTPS protocol (as is generally
considered best practice, since this will traffic to/from the server when
accessing it via browser), you’ll need to get an SSL certificate. The easiest
way to do this is by using the EFF Certbot (linked instructions for Debian
Jessie, but just use the correct ones for whatever system is running the
server) and using Let’s Encrypt.

These instructions will let you install certbot-auto from EFF’s website.
certbot-auto can automatically install certificates for an Apache server:

sudo /usr/local/bin/certbot-auto --apache

You can then automate renewal of the certificate (important because the certs
expire after 90 days) by adding the following to your systemd timer or
root crontab:

/usr/local/bin/certbot-auto renew

Setting Up Passwords for Run Summary Pages¶

You can put the username and password for the current run in
~/.llama_run_credentials in .netrc format. This will be used for the
run summary pages when basic HTTP authentication is in use with the flask
dev server.

External Authentication¶

The services referenced in this section require credentials provided by LLAMA
partners and commercial services. Authenticating with these
services is not necessary for testing the majority of the
LLAMA pipeline’s functionality, but it does require either
expenditure of funding (for Twilio) or getting help from our
busy partners
(for gw-astronomy.org and GCN). These are live services that
are used to disseminate results, and testing their
functionality requires care and coordination. It is
therefore highly recommended that this section be skipped
by all users who are not actively deploying the LLAMA code into production.

Bitbucket Authentication¶

At time of writing, the main software repository is stored on Bitbucket.

The first step is to Generate SSH Keys; once you’ve done that, you can
access your SSH key by logging in to your LLAMA server and printing out your
public key:

cat ~/.ssh/id_rsa.pub

You can now copy this key straight from your terminal and add it to Bitbucket.
First, navigate to Bitbucket’s website, followed by your user settings page,
and then click the SSH keys section under Security. At time of writing, you
can also directly access these settings at the following URL, where
USERNAME has been replaced with your bitbucket username:

https://bitbucket.org/account/user/USERNAME/ssh-keys/

Once there, click Add key and type the name of your server under Label and
paste the SSH key into the Key section. Hit Add key to finish the process.
You should now be able to push and pull from your Bitbucket repositories at the
command line on your server without needing to enter your username and
password, and if you have permission to access the pipeline repository, you
will now be able to clone it from its Bitbucket URL.

git.ligo.org Authentication¶

The first step is to Generate SSH Keys; once you’ve done that, you can
access your SSH key by logging in to your LLAMA server and printing out your
public key:

cat ~/.ssh/id_rsa.pub

You can now copy this key straight from your terminal and add it to
git.ligo.org.
Visit your git.ligo.org SSH-key settings page.
Once there, type the name of your server under Title and
paste the SSH key into the Key section. Hit Add key to finish the process.
You should now be able to push and pull from your git.ligo.org repositories at
the command line on your server without needing to enter your username and
password, and if you have permission to access the pipeline repository, you
will now be able to clone it from its Bitbucket URL.

Twilio Authentication¶

We use Twilio’s API to send SMS messages to LLAMA
operators for human-in-the-loop parts of the pipeline. To authenticate with
Twilio, you will need to provide your credentials as environmental variables.
The .bashrc file provided by default will try to run
~/.twilio-credentials, so the easy way to do this is to put your credentials
in that file. That file is pre-populated with the current LLAMA Twilio phone
number, so you don’t have to provide that.

	Go to Twilio’s dashboard
and click “Show API Credentials” in the top right corner of the screen. Take
note of the Account SID and Auth Token.

	Open up ~/.twilio-credentials with your prefered text editor

	Replace <YOUR-SID-HERE> with the Account SID you just got from Twilio’s
website. Replace <YOUR-TOKEN-HERE> with the Auth Token you just got
and save the file.

	You will need to reload your credentials or your ~/.bashrc file for the
changes to take effect. You can reload just the credentials by running:

source ~/.twilio-credentials

GW Astronomy Authentication¶

Make sure that the llama user on the
gw-astronomy.org server has your
public key saved to its authorized_keys file. If you have not set
this up yet, you will need to email the webmaster at
gw-astronomy.org and send your public
key, ~/.ssh/id_rsa.pub, so that the webmaster can authorize you
to log in to LLAMA’s gw-astronomy.org
account. This is necessary for uploading analysis results. If you
don’t know how to generate SSH keys, refer to the
instructions showing how to Generate SSH Keys above.

GCN Authentication¶

Make sure that you have an entry for this server in the
GCN network’s Sites Configuration
File. This is necessary
for receiving LVC events. In particular, you need to make sure there
is a site entry containing your server’s IP address (which must
be static) under the DIST_ADDRESS as well as a properly set
LVC_Enabled field. You should also make sure you are set up to
receive the proper alerts (including LVC_INITIAL_POS_MAP and
GWHEN_COINC at the time of writing).

Turning on the Pipeline¶

Subscribing to LVAlert Nodes¶

Make sure you have subscribed to all of the LVAlert nodes used by the pipeline
by running:

lvalert_admin -i

You should see all of the following (ordering does not matter):

Node: superevent [subscribed subid=k7hjUhAX0qLiLjXL6bCnXDPT1JngsDwFmZvCdGqp]
Node: cbc_gstlal [subscribed subid=DRPc5g1ivFNn504a5uQk2mzHVdarHWVzxD6S3u8Y]
Node: cbc_lowmass [subscribed subid=DGYiTkwsl58w3fwsFX72g2pIqERg0jfEY7fW9Bop]
Node: stc-testnode [subscribed subid=7lzckGSYHH28wswE4Rl8JnlpncKi9SsL8uOJZzZa]
Node: cbc_pycbc [subscribed subid=CDQriRVw7IsYU6Uh2Y738oHlwPnXkJJvdD9PWeTQ]
Node: cbc_mbtaonline [subscribed subid=cfiMONixdKRnl2DmSupPSD0BSArF3PasuoMAPcFU]
Node: burst_cwb [subscribed subid=LpOfqpgwdnNNn5XnRW9jNPCn7UZuxmtYJW7jlS7Z]
Node: test_superevent [subscribed subid=T8W2oLnNMC8TUnwaSdBErJEG0My8VGlJEcnGMWFv]
Node: cbc_spiir [subscribed subid=0H4qi2Fh5Uo7OnLjPaT1aydQLKiNdj0gxzmv5TXB]

If any of the above nodes are missing, add them with
llama_lvalert_subscribe, which just calls lvalert_admin --subscribe
--node ... on every node we want to listen to. It’s really just a shortcut
for the following:

lvalert_admin --subscribe --node superevent
lvalert_admin --subscribe --node cbc_gstlal
lvalert_admin --subscribe --node cbc_pycbc
lvalert_admin --subscribe --node cbc_mbtaonline
lvalert_admin --subscribe --node cbc_spiir
lvalert_admin --subscribe --node cbc_lowmass
lvalert_admin --subscribe --node stc-testnode
lvalert_admin --subscribe --node burst_cwb
lvalert_admin --subscribe --node test_superevent

(Note: you can also always print a full list of available LVAlert nodes by
running lvalert_admin -m.)

Starting Pipeline Daemons¶

Once you’ve subscribed to all of the above LVAlert nodes, navigate to the
repository directory and run:

llama run
llama listen lvalert
llama listen gcn
nohup serve_current_run 1>/dev/null 2>&1 </dev/null &

These commands will start:

	The LVAlert listener, which listens for new LVC events and
uses them to create new event directories when skymaps become available;
mark events as EM_READY when they have been vetted as ready for EM
follow-up; and marks them as having a superevent associated with them,
indicating that the results of a specific event can be distributed to the
public under the name of that superevent.

	The GCN Notice listener, which listens for new LVC events both as
confirmation that the event is public (and hence LLAMA can send out an
alert) and as a fallback to the LVAlert listener (in case something
non-standard happened in creating the superevent–as has happened in the
past with unusual events–which was corrected when the public-facing GCN
Notice was sent out).

	The LLAMA pipeline daemon (llama run), which checks the default event
directory for non-test events (hence the filter for GraceIDs starting
with “G”). When the GCN listener receives a new LVC VOEvent via a GCN Notice,
the LLAMA pipeline daemon will detect the new VOEvent and start running the
LLAMA joint analysis.

	The Current Run status page server (serve_current_run), which serves a
summary webpage with the current status of the LLAMA server and the events
processed as part of the current run over port 5000.
Assuming that the server is associated with the domain name gwhen.com,
one can view the current status of the server (including memory usage and
whether daemon processes are running) by visiting
gwhen.com:5000.

(The < /dev/null part is necessary due to some strange behavior in
MATLAB when running in the background using nohup.)

Testing LVAlert¶

Note that you can run a quick test to see if you’re connected to LVAlert by
starting up lvalert_listen (as described above) and submitting a test event
in GraceDB’s LVAlert JSON format using:

lvalert_send -v --node stc-testnode \
 --file ~/multimessenger-pipeline/static/mock_event.json

You should see the contents of that mock event show up in the LVAlert handler’s
logs, and if there was some intended side-effect of that LVAlert, you should
also see some verbose logging and a new/modified event in the default event
directory (~/.local/share/llama/current_run/). Note that, because
the test event was sent on stc-testnode, the event will be flagged as a
test event, and though the pipeline should run, no alerts will be sent to the
public.

Viewing Active Processes¶

You can see if these processes are running with:

llama run -R # find ``llama run`` processes
llama listen lvalert -R # show lvalert listener processes (if any)
llama listen gcn -R # show GCN listener processes (if any)
ps -ax | grep serve_current_run # find serve_current_run process

Checking Pipeline Logs¶

You can follow the log output in real time with:

lvalertd -t
tail -f logs/llamad.log
tail -f logs/serve_current_run.log

In general, all LLAMA pipeline output will be saved to the logs/
directory. This is true regardless of where you place the repository
directory.

Killing Pipeline Daemons¶

You can shut down the pipeline processes with:

llama run -k
llama listen lvalert -k
llama listen gcn -k
ps -ax | grep serve_current_run | sed /grep/d | awk '{print $1}' | xargs kill

Deprecated: MATLAB Logs¶

When running the pipeline with MATLAB code, all MATLAB-specific logging should
be viewable by running:

tail -f logs/llama.matlab.log # matlab process output goes here

Developing for LLAMA¶

This section is intended for new LLAMA developers.

Introduction to Development¶

Structure of the Pipeline¶

The LLAMA pipeline is designed to be flexible, robust, reproducible, parallel,
and east to develop. This is accomplished by treating data processing as a
bunch of methods for processing input data and producing output data
independently of other parts of the analysis. LLAMA defines a python class
called a FileHandler that specifies at minimum the following information
about a data file:

	The filename

	The complete list of input files required to generate this file

	The code used to actually generate this file from its inputs

Thus, each file is connected to the list of files necessary for its own
generation, forming a file dependency graph (an instance of a Directed Acyclic
Graph, or DAG, as used in other data analysis pipeline tools). When a file’s
dependencies are available, it will be generated without affecting
neighboring parts of the analysis, and each step of the pipeline is reproducible
using the saved files (which are the only stateful part of the pipeline).

Adding Functionality¶

This approach makes it very easy to add new data processing capabilities to
LLAMA. Just follow these steps:

	Add a new python file in /llama/files that defines a subclass of
abstract.FileHandler You will have to implement a few abstract methods
and properties (see e.g.
llama/files/lvc_skymap_mat.py for a simple
example of a FileHandler implementation):

	The filename property, which gives the name of the new output file

	The dependencies property, which returns a list of FileHandler classes
for each input file required to generate this file (make sure to import
those FileHandler classes!)

	The _generate method, which defines the steps needed to generate this
file using input data. You can access things like the full path to a
dependency file by instantiating a copy of its FileHandler and getting the
fullpath property using e.g.
other_file_handler_class(self).fullpath.

	Make sure that your new FileHandler is included in the actual pipeline by
importing the class in /llama/files/__init__.py

	Test that the pipeline runs and produces desired output by running one of
the developer tests, e.g. make testpipeline7 (or whatever test you feel
like using in the makefile). Check that the output data is what you would
expect for your new file by looking in the event directory for this test
(/testout/events/testpipeline7 in this example).

	If your new file looks good, run nosetests in the root repository
directory to make sure that you didn’t somehow break anything.

	If nosetests pass, git commit your code and push it to the remote
repository.

	Last but not least, remember to restart the pipeline in order to see
your updates actually applied; the pipeline does not refresh its code
automatically (a good thing for developing). You can do so with the following
commands:

llama run -k # might need to run this twice
llama run

Developer Conventions and Best Practices¶

Please follow the following standards with code written for the LLAMA pipeline:

Data Format Conventions¶

	All event files must represent angles in degrees. This means that, when
querying external APIs, you must convert radians to degrees before saving
data in an event directory. (You should log any raw data you throw out so
that we can check the correctness of the conversion; see point on logging
below).

Coding Best Practices¶

	Don’t hard code filenames or other magic strings! If you need to get data from
a file, make sure that that file has its own FileHandler defining how it can
be (reproducibly!) generated, then import that FileHandler class,
instantiate a copy by feeding the current FileHandler as an argument to
the dependency FileHandler class, and get the data you want (like filename)
from that instance.

	Log all actions. This can be done very easily by sticking to the FileHandler
subclass idiom defined by LLAMA.

	Please verbosely log any incoming raw data before it is thrown out. This
way we can go back and see if we accidentally deleted good pulled data.

Testing¶

Go into the root repository directory (i.e. the top level directory of the
git repository, which is assumed to be ~/multimessenger-pipeline at the
time of writing of this documentation) and run:

make testgracedb

to make sure that you are properly authenticated using your LIGO
credentials. You should see the following output (or something like it)
printed to console (note that the following is output; don’t type it
into the console):

llama/tests/testgracedb.py | tee -a logs/llama.testgracedb.log
running testgracedb at 2016-09-13 18:32:05.577660
Attempting to connect to GraceDB.
Attempting to download the boxin day even event.log.
Received successfully. Logging contents.
Pipeline: gstlal
Search: HighMass
MChirp: 9.555
MTot: 26.3501410484
End Time: 1135136350.647757924
SNR: 11.710
IFOs: H1,L1
FAR: 3.333e-11

If your output does not match the above, then you most likely need to
log in using your LIGO credentials (See LIGO Authentication).

Next, run the full collection of unit tests using:

nosetests

This will take a few minutes and will not produce much output while it is
running. If all tests succeed, you will see the number of tests that were run
and the status message OK. You will be alerted at the end if any of the tests
fail or if the tests themselves cannot be completed due to errors. Be aware
that, if any of the tests fails, the output files will remain in /tmp
taking up a fair amount of space. They are hard links by default, so this
shouldn’t take up much extra space, but it is worth deleting directories of the
form /tmp/tmp* after a failed run (after making sure you don’t have other
data matching that file pattern, of course).

Appendix¶

Migrating to Conda¶

Migrating to Conda should simplify some LIGO dependency issues. It might make it
harder to use IceCube software (have not checked whether this supports Conda
packaging yet), but this is not currently an issue since we have IceCube stub
methods installed.

Note that, at time of writing, LVAlert had not migrated to Conda, and so the
old installation method is still required to be able to use LVAlert.

LIGO Wiki Documentation¶

The latest documentation on installing from source should always be available
from the LSCSoft Conda documentation page. The instructions below are pulled
directly therefrom. We can also follow LSC’s guide for making a new Conda
package if we want to make the pipeline distributable by Conda in the future.

Installing LIGO Software via Conda¶

Conda installs are done on a per-user basis, so you won’t need to use sudo for
any of the below. Start by installing the latest version of Conda:

curl -O https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

You’ll now need to exit your SSH session and log in again for conda to show
up as a command; run exit to exit and then SSH back into the server. Now,
activate your Conda environment and add the conda-forge channel (used to
distribute custom Conda packages):

conda activate
conda config --add channels conda-forge

Next, install all available LIGO software:

wget -q https://git.ligo.org/lscsoft/conda/raw/master/environment-py36.yml
conda env create -f environment-py36.yml

Finally, you can activate the LIGO python computing environment with:

conda activate ligo-py36

You will probably want to put this in your .bashrc if you plan on using it
all the time.

Troubleshooting Installation¶

Problem: cmake keeps failing while installing IceCube software.

Solution: You probably did not check out the entire IceCube repository when
you ran svn co. You will need to remove the IceCube source and build
directories by running sudo rm -rf /usr/local/icecube/offline/* and start
over from when you entered your IceCube credentials.

Creating a new user¶

You should preferably not run the pipeline as root. You can add a
new user named, e.g., vagrant in Debian and Ubuntu with:

adduser vagrant

You will then want to give this user sudo priviledges by adding
them to the sudoers file (this will allow the user to do
administrative tasks using the command sudo). You will want to
run

visudo

which will open up the sudoers file for editing in the default
text editor (for Debian, this is probably nano). You will need to
add the following line anywhere in the file, then save and quit:

vagrant ALL=(ALL) NOPASSWD: ALL

(Of course, if your username is not vagrant, you should use a
different name above.)

You can test whether your update to sudoers succeeded by
running:

sudo echo 'Success! You have sudo priviledges.'

If this succeeds, it will print a success message.

Out of Memory¶

Add swap space (virtual memory) using the following commands:

sudo fallocate -l 12G /swapfile
sudo chmod 0600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon -s
free -m
sudo bash -c \
 "echo '/swapfile none swap sw 0 0' >>/etc/fstab"
cat /etc/fstab

MATLAB Installation Troubleshooting¶

You will probably want to install MATLAB using the GUI. This is easy if
you are already on a desktop environment.

If you are configuring a remote server to run the LLAMA pipeline, you
will need to make sure that you have X11 Forwarding enabled so that you
can control the MATLAB installer GUI from your computer. See the
appendix entry on SSH with X11 Forwarding for information.

Unzip the downloaded zip file with (note: the filename might change if you
install a newer version of MATLAB.):

unzip matlab_R2016b_ginxa64.zip -d ~/matlab

and then run the install executable located in the unzipped
directory, which will launch the MATLAB installer GUI:

~/matlab/install

Make sure to select items 1-3 (listed in the install
MATLAB section) in the installer window in addition
to MATLAB itself. You can do without all of the other toolboxes. Once
you are done, run matlab with

matlab

which will bring up the MATLAB GUI. Download jsonlab, then change
your MATLAB working directory to the folder containing jsonlab and
double click on the jsonlab file, which should have a full name
along the lines of jsonlab-1.2.mltbx. You will be asked if you would
like to install jsonlab; you should, of course, say yes. Again, bear
in mind that you might need to repeat this procedure; for some reason
MATLAB doesn’t always “remember” that it has jsonlab installed when
you restart it. I don’t know how to remedy this besides installing
jsonlab for a second time. You can confirm that JSONLab is installed
by opening a MATLAB session and seeing if loadjson is a valid
command; if it is, then JSONLab has been successfully installed.

Install IceCube Offline Software with Root¶

At the original time of writing, it was not necessary to install IceCube
offline software. The following instructions are necessary in the event that
IceCube software libraries with ROOT dependencies become needed by LLAMA.
For some reason, IceCube offline software will not compile properly when
using the version of ROOT installed by the system package manager, so it is
necessary to install the IceCube I3_PORTS version, as detailed bellow.
This installation is extremely time consuming and should be skipped
unless IceCube packages containing root become necessary for LLAMA.

First, install dependencies
for the IceCube offline software (plus a few other requirements for LLAMA):

sudo apt-get -y install build-essential cmake libbz2-dev libgl1-mesa-dev \
 freeglut3-dev libxml2-dev subversion libboost-python-dev \
 libboost-system-dev libboost-signals-dev libboost-thread-dev \
 libboost-date-time-dev libboost-serialization-dev \
 libboost-filesystem-dev libboost-program-options-dev \
 libboost-regex-dev libboost-iostreams-dev libgsl0-dev libcdk5-dev \
 libarchive-dev python-scipy ipython-qtconsole libqt4-dev \
 python-urwid python-tables libxft-dev

Next, install I3 Ports, a set of executables that provide a consistent
environment for IceCube offline software. IceCube
documentation
suggests running this as a user other than root. This next step will take
several hours to complete and must be restarted if it fails partway through.
You might consider letting this run overnight or during some other
unsupervised stretch of time. It will be significantly quicker on a fast
system, but still painfully slow.

cd ~
svn co http://code.icecube.wisc.edu/icetray-dist/tools/DarwinPorts/trunk \
 port_source
cd port_source
./i3-install.sh "$I3_PORTS"

Next, check out IceCube offline software. if you encounter a segmentation
fault during SVN checkout, see the next set of instructions below the next code
block. These instructions are adapted from the original IceCube offline
software installation
instructions;
you can find all offline software releases
here.

mkdir ~/offline
cd ~/offline
svn co http://code.icecube.wisc.edu/svn/meta-projects/offline-software/releases/V15-08-00 src

If you encounter a segmentation fault (a known bug
on Debian Jesse’s SVN version), you can run svn cleanup src followed by
svn update src and repeat until the source code has been fully checked
out.

Now it is time to build the IceTray software. This step is also very long (if
not as long as the previous one); set aside a couple of hours for it.
Fortunately, this step can be resumed at the make step in the event of
failure.

mkdir ~/offline/build
cd ~/offline/build
"$I3_PORTS/bin/cmake" ../src
make

Finally, download some data used by IceCube test and example scripts.

make rsync

You should now be able to open up an icecube environment using:

./env-shell.sh

You should see a “Welcome to Ice Tray” message. You can check whether the
IceCube python module has been installed by running:

python -c 'from icecube import dataclasses; print("Success!")'

If this runs without error and prints Success!, then you have successfully
installed the IceCube python module. Well done! You can now exit the Ice Tray
environment:

exit

To make sure that IceCube software is available when logging in, you will have
to add some new environmental variables to your .bashrc file with the
install locations. Since environmental variables depend on where you installed
the IceCube offline software, it is vital that you base the environmental
variables off of your current installation configuration.
Making sure that you are still in the build directory,
run the following commands:

eval "$(grep ROOTSYS= env-shell.sh)"
_I3_BUILD="$(pwd -P)"
pushd ../src
_I3_SRC="$(pwd -P)"
popd
pushd "$I3_PORTS"
_I3_PORTS="$(pwd -P)"
popd
_I3_TESTDATA="$_I3_PORTS/test-data"
rm -f ~/.i3env
printf 'ROOTSYS="%s"' "$ROOTSYS" >>~/.i3env
printf 'PYTHONPATH="%s"/lib:"%s"/lib:"$PYTHONPATH"\n' \
 "$_I3_BUILD" "$ROOTSYS" >>~/.i3env
printf 'I3_BUILD="%s"' "$_I3_BUILD" >>~/.i3env
printf 'I3_SRC="%s"' "$_I3_SRC" >>~/.i3env
printf 'I3_PORTS="%s"' "$_I3_PORTS" >>~/.i3env
printf 'I3_TESTDATA="%s"' "$_I3_TESTDATA" >>~/.i3env

You can now test whether your environment will run correctly by sourcing
your .bashrc file:

. ~/.bashrc

You should see a message telling you that the IceCube software environment
was successfully configured. Quickly test whether the IceCube python module
is installed in the same way as before:

python -c 'from icecube import dataclasses; print("Success!")'

Once again, you should see Success! printed on your console. If so,
congratulations! You have successfully installed the IceCube environment.

Installing Ubuntu for Windows¶

With Windows 10, it is now possible to install an Ubuntu userspace (with
Bash included) on a Windows machine. This means that Ubuntu packages can
be installed and Ubuntu binaries can be run directly on Windows (thanks
to some sort of system call translation wizardry). This provides a
handy and straightforward way of connecting to remote servers via SSH,
even if you are on Windows, without having to install something like
Putty. This has some other nice advantages,
and, for the purpose of this guide, I will assume you have Bash
installed on your local computer (even if you are using SSH to connect
to a remote server for installing the LLAMA software).

You can follow the instructions in
this guide
to install Ubuntu for Windows.

Logging in to a Remote Server Using SSH¶

Start by opening up a bash instance.

	If you are on a Mac, you can do this by running Terminal.app, which
should be in your /Applications folder, or by hitting Command-Space,
typing “Terminal.app”, and hitting Enter.

	If you are on a PC running Windows 10, you can actually
install the Ubuntu userspace (with Bash included).
Once this is installed, you can just open the Bash executable from your
programs folder in the Start menu, or just hit the Windows button, type
bash, and hit Enter to launch a new Bash session.

	If you are running Linux and don’t know how to start a terminal session,
may God help you.

Now, let’s say you are logging in to a server at IP address 1.2.3.4,
your username on the remote server is vagrant, and you have some
password. Just run the following and enter your password when prompted:

ssh vagrant@1.2.3.4

If you have your server mapped to a web URL, like example.com, you
can use that instead of the IP address, as show below:

ssh vagrant@example.com

Congratulations! You should be logged in to your remote server. You can
now proceed with installing the pipeline.

Getting LLAMA Software onto a Remote Server¶

Let’s assume someone sent you the LLAMA software in a compressed archive
(e.g. a zipfile). You should have received a download link for the
archive, in which case you can download the file directly from your
LLAMA server. If you are running a remote machine,
log in using SSH;
if you are running LLAMA locally or in a virtual machine, simply open
up a terminal session.

Let’s assume the URL for the LLAMA software archive is
example.com/llama.zip. You can download the archive to your home
directory as follows:

cd ~
wget example.com/llama.zip

Now, you can unzip the file:

unzip llama.zip

You should now have a directory called multimessenger-pipeline in your
home folder.

SSH with X11 Forwarding¶

This will allow you to run MATLAB’s installer GUI and the MATLAB GUI
itself, both of which are necessary for the installation process, on a
remote server or on a local virtual machine being accessed through
ssh.

	On Macs, you must install XQuartz.
Then, when logging in to the LLAMA server, use the
-o ForwardX11=yes and -o ForwardX11Trusted=yes flags to turn on X
Window Forwarding. For example, if your server is c137.com and the
username is rick.sanchez, you can log in with:

ssh -o ForwardX11=yes -o ForwardX11Trusted=yes rick.sanchez@c137.com

	On Linux, assuming you have a GUI, you probably have an X11 Server
installed already. If that is the case, you can just ssh with the
-o ForwardX11=yes and -o ForwardX11Trusted=yes flags, just as in the
above example for Macs.

	On Windows machines, you can use
XMing as your X Windows
server and Putty as your SSH client. If you
have Windows 10, you can use Ubuntu for Windows (See instructions for
Installing Ubuntu for Windows), and you can use bash instead of
Putty. Once again, you can run

ssh -o ForwardX11=yes -o ForwardX11Trusted=yes rick.sanchez@c137.com

If you use your ~/.ssh/config file for ssh settings (will work
for Linux or Mac; I am not sure about Windows), you can
also automatically turn on X11 forwarding for your LLAMA server by
adding the lines

ForwardX11 yes
ForwardX11Trusted yes

to the site entry for your LLAMA server in your ~/.ssh/config file.
For example, if you wanted to call the above server earth, you
could add the following block to your ~/.ssh/config file:

Host earth
 HostName c137.com
 User rick.sanchez
 ForwardX11 yes
 ForwardX11Trusted yes

Which makes connecting to the server with all of your desired settings
much quicker (and saves you from having to remember ssh command
syntax or the server URL):

ssh earth

Once you have established an SSH connection with X11 forwarding enabled, you
will need to make sure that the root account and the account you are logging
into share the same .Xauthority file. To do so, run:

cd ~
if sudo [-e /root/.Xauthority]; then
 sudo mv /root/.Xauthority /root/.Xauthority.orig
fi
sudo cp .Xauthority /root/.Xauthority

Using LLAMA¶

The llama python module and its executables all have docstring
documentation and are designed for interactive use. Read the help
functions and play around with things in ipython to get a feel for
how they work, and ask Stefan Countryman for help if you have any
questions. I will put FAQs here if I find that any Qs have become F.

Documenting LLAMA¶

Overview¶

LLAMA uses reStructuredText documents to generate nicely-formatted webpages
and PDF files (via Sphinx). There is even a Makefile included to
facilitate publishing. The instructions below assume that you are starting
from within the LLAMA installation folder (if you followed this installation
guide, it will be in ~/multimessenger-pipeline).

Publishing to gwhen.com Website¶

This repository contains tools for making a nice, reviewer/developer friendly
website on the production server (gwhen.com at time of writing).
Check out the README.md file in ~/multimessenger-pipeline/review-site
for instructions. Also make sure that the contents of
multimessenger-pipeline/git-hooks has been copied to
multimessenger-pipeline/.git/hooks (to ensure that documentation is
automatically refreshed whenever the documentation source is changed).

You can also enable the status server at gwhen.com/status. First, turn on
CGI scripts:

sudo a2enmod cgi

You’ll then need to add this alias to your apache configuration file (should be
/etc/apache2/apache2.conf):

ScriptAlias "/status/" "/var/www/html/status/status.py"

Finally, restart apache:

sudo service apache2 restart

Publishing Readme to Git Host¶

If your Git hosting provider (e.g. GitHub) supports symbolic links and
reStructuredText rendering, you can just commit your changes and push them to
the provider’s remote repository. The Readme will immediately be rendered and
updated.

Publishing PDFs¶

From the LLAMA installation folder, navigate into
the documentation folder and generate the PDF:

cd docs
make latexpdf

You can check the quality of your handiwork immediately using xpdf to
view the output file:

xpdf build/latex/*pdf

Publishing HTML Web Pages¶

From the LLAMA installation folder, navigate into
the documentation folder and generate the HTML files:

cd docs
make html

You can run a python server from within docs to view the output:

cd build/html
python -m SimpleHTTPServer

While the python server is running, you can view the documentation webpage
by opening any web browser and navigating to the URL of your server (you will
have to append the port number, which defaults to 8000 for SimpleHTTPServer).
If your server has the URL example.com, then you would want to navigate
to example.com:8000. You should then be able to see the webpage.

Troubleshooting LLAMA¶

Problem: llama run (or some other program that updates files)
keeps crashing when trying to generate a skymap or other data generated
with MATLAB. The MATLAB log located at logs/llama.matlab.log
mentions something about loadjson or savejson (or something else
with json in it), like in the below error message:

Undefined function 'loadjson' for input arguments of type 'char'.

Solution: Make sure the JSONLab toolbox is installed in MATLAB.
For some reason installation does not persist after the first
installation, and a second installation is usually required. You can
confirm that JSONLab is installed by opening a MATLAB session and seeing
if loadjson is a valid command; if it is, then JSONLab has been
successfully installed.

Problem: llama run (or some other program that updates files)
keeps crashing when trying to download lvc_initial.fits.gz or some
other file located on GraceDB.

Solution: Refresh your LIGO authentication. See the section above
on LIGO authentication.

Problem: llama run (or some other program that updates files)
keeps crashing when trying to generate a skymap or other data generated
with MATLAB; MATLAB claims that files are missing.

Solution: Download the missing
~/multimessenger-pipeline/Neutrinos/Data folder.

Problem: I am running this on a small throwaway server and am out of
space, but I don’t want to spend more money on disk space.

Solution: Delete the contents of /var/cache/apt and
/usr/share/doc to clear up (probably) around 3GB of data that are unlikely
to be of further benefit.

Setting Up the Review Server¶

These instructions explain how to set up a server for reviewers to test the
pipeline on.

Provisioning the review server¶

Run the following command and enter your admin password (since we’re creating
a new user named “reviewer”) as well as info for the new user:

~/multimessenger-pipeline/review-site/provision

This will get everything set up for a new reviewer. In particular, if the
reviewer user account has not been made, a command will be run to create
the account for you; in this case, you will have to specify a password, accept
all other defaults, and then relaunch the .provision script.
Now, assuming you have password-based authentication turned on, your reviewers
can log in to the server using the username reviewer and the password you
specified.

Running the Review¶

Run:

~/llamatest

This script will run through a few injected test cases (as described on
gwhen.com). It will describe what it has done and
whether it succeeded; you can confirm the results for yourself by looking in
the output directory, ~/.local/share/llama/current_run. The python
library used by llamatest is located in
~/multimessenger-pipeline/llama.

Ideas for the Future¶

This section contains exploratory notes and links on ideas, methods, and
features that might be useful for the pipeline in the future.

CVMFS¶

It’s worth investigating using the CernVM-File System (CernVM-FS, or CVMFS)
as a software environment provisioning method. Software and data are
represented in a virtual file-system mounted to /cvmfs, and file therefrom
are downloaded and cached locally on an as-needed basis, promising fast
provisioning times.

LIGO seems to just be starting to support CVMFS
at time of writing, while IceCube seems to have mature CVMFS support based
on a cursory viewing of their documentation. If software matures in both
collaborations to the point where the distributions on CVMFS can dependibly
provide all of the needed features, it might be possible to switch over to
CVMFS for IceCube and LIGO software.

Advantages¶

	If other projects support CVMFS, it will be faster to incorporate their
tooling into the pipeline using CVMFS.

	We can create very lightweight virtual machine images and docker containers
with empty CVMFS caches for archiving, development, and deployment purposes;
they will be faster to provision, archive, download, and restart thanks to
this reduces size (though in a cluster environment, it would of course cause
multiple parallel downloads to CVMFS, which might be a bottleneck, or even
worse, an unintentional DDoS attack on CVMFS).

Disadvantages¶

	Less flexible than having a user-maintained Conda installation.

	root privileges would be necessary for sysadmin, and CVMFS idiosyncracies
will likely make it much harder to support heterogeneous platforms in a
fault-tolerant way (this is pretty important).

 Next

 Previous

 © Copyright 2016-2019, Stefan Trklja Countryman, Kenneth Rainer Corley, Doğa Veske

 Built with Sphinx using a theme provided by Read the Docs.

